Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363548

RESUMO

Radiation exposure occurs during medical procedures, nuclear accidents, or spaceflight, making effective medical countermeasures a public health priority. Naïve T cells are highly sensitive to radiation-induced depletion, although their numbers recover with time. Circulating memory CD8+ T cells are also depleted by radiation; however, their numbers do not recover. Critically, the impact of radiation exposure on tissue-resident memory T cells (TRM) remains unknown. Here, we found that sublethal thorax-targeted radiation resulted in the rapid and prolonged numerical decline of influenza A virus (IAV)-specific lung TRM in mice, but no decline in antigen-matched circulating memory T cells. Prolonged loss of lung TRM was associated with decreased heterosubtypic immunity. Importantly, boosting with IAV-epitope expressing pathogens that replicate in the lungs or peripheral tissues or with a peripherally administered mRNA vaccine regenerated lung TRM that was derived largely from circulating memory CD8+ T cells. Designing effective vaccination strategies to regenerate TRM will be important in combating the immunological effects of radiation exposure.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Exposição à Radiação , Camundongos , Animais , Linfócitos T CD8-Positivos , Células T de Memória , Pulmão , Memória Imunológica
2.
Trends Biochem Sci ; 49(4): 277-279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184399

RESUMO

Research retreats are elements of scientific graduate training programs. Although expected to provide strong educational value, some students are reluctant to attend. Here, we identify participation barriers and provide guidelines for retreat design that minimize obstacles and establish an inclusive environment to improve attendance and enrichment for all attendees.

3.
Acta Neuropathol Commun ; 11(1): 134, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596685

RESUMO

Accumulating evidence suggests that type I interferon (IFN-I) signaling is a key contributor to immune cell-mediated neuropathology in neurodegenerative diseases. Recently, we demonstrated a robust upregulation of type I interferon-stimulated genes in microglia and astrocytes following experimental traumatic brain injury (TBI). The specific molecular and cellular mechanisms by which IFN-I signaling impacts the neuroimmune response and neuropathology following TBI remains unknown. Using the lateral fluid percussion injury model (FPI) in adult male mice, we demonstrated that IFN α/ß receptor (IFNAR) deficiency resulted in selective and sustained blockade of type I interferon-stimulated genes following TBI as well as decreased microgliosis and monocyte infiltration. Molecular alteration of reactive microglia also occurred with diminished expression of genes needed for MHC class I antigen processing and presentation following TBI. This was associated with decreased accumulation of cytotoxic T cells in the brain. The IFNAR-dependent modulation of the neuroimmune response was accompanied by protection from secondary neuronal death, white matter disruption, and neurobehavioral dysfunction. These data support further efforts to leverage the IFN-I pathway for novel, targeted therapy of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Interferon Tipo I , Masculino , Animais , Camundongos , Neuropatologia , Lesões Encefálicas Traumáticas/complicações , Encéfalo , Anticorpos
4.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333385

RESUMO

Accumulating evidence suggests that type I interferon (IFN-I) signaling is a key contributor to immune cell-mediated neuropathology in neurodegenerative diseases. Recently, we demonstrated a robust upregulation of type I interferon-stimulated genes in microglia and astrocytes following experimental traumatic brain injury (TBI). The specific molecular and cellular mechanisms by which IFN-I signaling impacts the neuroimmune response and neuropathology following TBI remains unknown. Using the lateral fluid percussion injury model (FPI) in adult male mice, we demonstrated that IFN α/ß receptor (IFNAR) deficiency resulted in selective and sustained blockade of type I interferon-stimulated genes following TBI as well as decreased microgliosis and monocyte infiltration. Phenotypic alteration of reactive microglia also occurred with diminished expression of molecules needed for MHC class I antigen processing and presentation following TBI. This was associated with decreased accumulation of cytotoxic T cells in the brain. The IFNAR-dependent modulation of the neuroimmune response was accompanied by protection from secondary neuronal death, white matter disruption, and neurobehavioral dysfunction. These data support further efforts to leverage the IFN-I pathway for novel, targeted therapy of TBI.

5.
Trends Immunol ; 43(12): 1018-1031, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369103

RESUMO

The mammalian central nervous system (CNS) contains a vibrant community of resident adaptive immune cells at homeostasis. Among these are memory CD8+ and CD4+ T cells, which reside in the CNS in the settings of health, aging, and neurological disease. These T cells commonly exhibit a tissue-resident memory (TRM) phenotype, suggesting that they are antigen-experienced and remain separate from the circulation. Despite these characterizations, T cell surveillance of the CNS has only recently been studied through the lens of TRM immunology. In this Review, we outline emerging concepts of CNS TRM generation, localization, maintenance, function, and specificity. In this way, we hope to highlight roles of CNS TRM in health and disease to inform future studies of adaptive neuroimmunity.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Animais , Antígenos , Homeostase , Mamíferos
6.
Cell Rep ; 37(5): 109956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731605

RESUMO

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/sangue , Listeriose/imunologia , Listeriose/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/parasitologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Malária/sangue , Malária/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Parasitária , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagócitos/parasitologia , Plasmodium berghei/patogenicidade , Fatores de Tempo
7.
J Comp Neurol ; 529(3): 635-654, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32602558

RESUMO

Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain. Sensory information may be modulated by projections from the brain to the spinal cord, but the neural substrates for top-down sensory control are incompletely understood. We identified a novel population of inhibitory neurons in the mouse brainstem, distinguished by their expression of prodynorphin, which we named LJA5. Here, we identify a similar group of Pdyn+ neurons in the human brainstem, and we define the efferent and afferent projection patterns of LJA5 neurons in mouse. Using specific genetic tools, we selectively traced the projections of the Pdyn-expressing LJA5 neurons through the brain and spinal cord. Terminal fields were densest in the lateral and ventrolateral periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), caudal pressor area, and lamina I of the spinal trigeminal nucleus and all levels of the spinal cord. We then labeled cell types in the PAG, LPB, medulla, and spinal cord to better define the specific targets of LJA5 boutons. LJA5 neurons send the only known inhibitory descending projection specifically to lamina I of the spinal cord, which transmits afferent pain, temperature, and itch information up to the brain. Using retrograde tracing, we found LJA5 neurons receive inputs from sensory and stress areas such as somatosensory/insular cortex, preoptic area, paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus, PAG, and LPB. This pattern of inputs and outputs suggest LJA5 neurons are uniquely positioned to be activated by sensation and stress, and in turn, inhibit pain and itch.


Assuntos
Tronco Encefálico/química , Tronco Encefálico/metabolismo , Encefalinas/análise , Encefalinas/metabolismo , Neurônios/química , Neurônios/metabolismo , Precursores de Proteínas/análise , Precursores de Proteínas/metabolismo , Animais , Tronco Encefálico/citologia , Humanos , Recém-Nascido , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...